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EXACT SOLUTIONS OF THE FOKKER-BLACK- KO~OGORO~ EQUATION FOR 
C~RTArN ~~Tr~~~NS~~NA~ ~YN~rC SYSTEMS* 

Analytic solutions of the Fokkor-Planck-Kolmogorov equations for the 
stationary joint probability densities of the state variables areobtained 
for one class of muLtidimensionaL nonlinear dynamic systems with external 
random perturbations of white-noise type, and for one class of multidimen- 
sional linear dynamic systems with simultaneously acting external and 
parametric random pesturbations of white-noise type. The behaviour of the 
I&&i-Volterra system in a random medium is investigated as an example. 

f. Consider the system of stochastic differential equations 

H = H f%,. . .I %a; .!/l, * y f i = 1,. . .~ Ii -a, R, 

Here ci(%) are independent stationary normal centred random processes of white-noise type of 
similar intensity D: (& (t& I$-+- 1)) = I&& f?)+ where 6,j is the Kronecker delta, 6 (+)is the 
ae3.m function, and the angle brackets denote averaging. Ths joint probability density p {xX,. 
. *, r,; Y,, * . ., ?h; t) 
tion /1,2/ 

of the variables xi(t)* gt(t) satisfies the Fokker-Planck-Kolmogorovequa- 

By direct substitution it can be shown that Eq.fl.2) has the following stationary @p&t%& 0) 
salution 

P&z, * .., G 111, . . f t id = c ew I- m4 (3 ml (1.31 

~~~_~~~~)~~ 
P 

Here C is a constant to be determined from the normalization condition tit is clear that solu- 
tion (1.3) will in fact determine the desired stationary probability density only if a normal- 
ization integral exists). For the special case 

n 

H(Xl, *. . , G; d(l, . . . , &J = v (r1, . ” . 1 4 -i- -$- I: I/t 
Ul 

distribution (1.31 was obtained in /3/. 
Asanexample letus consider a modified Lotki-Volterxa system describing the fluctuation 

in the sizes of two interacting populations of the "pxedator-prey" type in a random medium 

/4,5/ 
u' = k@v- mu, v‘ = au fl + f @)I - fiuv - yti (1.4) 

Nere IL (t)and vft)are the sizes of the two populations; k,@, m, a, y are positive constants, 

and ,g (t) is a stationary normal centred random process of white-noise type with intensity 

Dt* Xn /4/ the problem being examined was investigated by analyzing the stochastic mean- 
square stability of the ewation for small perturbations, obtained by linearizing the Eqs. (1.4) 

in a neigbbourhood of a stable equilibrium position 

UQ = a/@ - ym/(k@*), v,, = ml(kfJ) 

[Here and henceforth we assume that y< ak@/m). 
By the change of variables 

*Prikl.~alatem,ffekhan.,Vo1.47,No.4,pp.55~-~58,1~8~ 

458 

(1.5) 
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it = In u, y = In v (1.6) 

Ecrs.fl.4) can be reduced to the form (l.l), and (since the index i takes only the one value 
n-= l,we will omit it) 

H (z, y) = kp” - my + @Z - (a - ymf(kp)) z (1.7) 

g (H) = y I (k@, D = D& 

Substituting (1.7) into (1.3) and returning to the original variables u and V, by the 

well-known rules for finding the probability density of a function of a random variable /1,6/, 
using (1.5) we obtain, after normalizing in the first quadrant of the plane U,V the following 
expression for the stationary joint probability density W(U, v)of the two population sizes (I' 
is the gamma function) 

W(U, v)=w~(u)zun(v), wl (u)=(S/Q)bt*W-X (6uO/k)u““*‘%+‘lk (1.8) 

wg (v) = iFr_’ (C&B) I.+-%+, 6 = 2y/(D@) 

Thus, for steady-state fluctuations of system (1.4) the processes u(t)and v(t)are statist- 
ically independent and are subject to one and the same distribution Law x2_ The means of 
processes u (t), v (t) equal ue, n0, respectively, the variances equal u&B, ~016, respectively, 
and the largest probable values (the maximum points of the functions_ wr(u), W*(D)) equal uB - 
k/6, vg - Ifs, respectively. DE-.+0 the probability densities wr (u) and'w, (n)are asymptotic- 
ally normal, while for fairly intense random perturbations - when 6< klu,, and 6 ( l/v, re- 
spectively - they are monotonically decreasing on the semi-axes u>O,v> 0 and have singular- 
ities at the points n = 0, v = 0. Such a qualitative transformation of the function w(u,v) in 
the domain of large DE does not at all signify, however, the death of the populations, since 
the singularities mentioned are integrable, i.e., for any positive ~l~,v~,F) expression (1.8) 
does indeed represent the joint stationary probability density of tire processes u(t) and v(t). 
It is clear that the deduction that the populations do not vanish, valid onlywithintheframe- 
work of the present model, does not take into account those effects which are connected with 
the discreteness of the real processes u (t) and v(t)and which may become essential when the 
values of u, and v are not sufficiently large compared with unity. 

Let us find the average per unit time of the number n+(u) of intersections by the process 
u(t) of some level u with a positive derivative u' = 2. Let p (U,Z) be.the stationary joint 

probability density of the processes u(t)and z(t). Making use of a well-known /l/ 
for n+(u) and expressing z in terms of u,v in accordance with the first equation 
we have 

expression 
in (l-4), 

n+(u)=~Zp(u,I)dz=~ksll(v--va)w(u,v)du 
0 Y. 

Substituting (1.8) into (1.9) and carrying out the integration, we obtain 

(1.9) 

(1.10) 

In particular, from (1.10) we obtain (on the basis of the asymptotic representation of the 
gamma function in the domain of large values of the argument /7/) the formula 

The quantity 51 is the natural frequency of small fluctuations of system (1.4) in the neighbour- 
hood of the stable equilibrium position uO, vO. 

2. We consider the system of stochastic differential equations 

5,' = - @A=~ II + E (t)f + & (t); i - 1,. . ., n (2.1) 

to be understood in Stratonovich's sense. Here 5 (t), 6% (t) are independent stationary centred 
normal random processes of white-noise type, and(f (t)g (t+ T)) 
i = 1, . . *, n. 

= D&(T), ;<L (t) 5r (t + z)) = DE& (r), 
The Fokker-Planck- Kolmogorov equation for the joint probability density p (x1, 

. . ..G t) can be written, according to /2/, as 

Equation (2.2) has the stationary (apfat=O) solution 

Y. = D&IDE, 6 = l/fJDr -/- n/2 (2.3) 
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(as before, 
probability 

C is a normalizing constant). Solution (2.3) determines the stationary joznt 
density of the variables q(t) when the normability condition 26 > 2/(~&) +n is 

satisfied, i.e., when p>O. We see that this condition is identical with the condition of 
stochastic probability-stability of systam (2.1) with & (t)rO /8/. 

tions 
We consider further the following system of Stratonovich stochastic differential equa- 

A;=-. aAt + W& -I- Q/A+ + (W$G’ (t) - @LIpA& (t); i = 1, . . . , n 12.3) 

Here &‘(t), &‘(t) are independent stationary centered normal random processes of white-noise 
type of unit intensity. Changing in (2.4) to the new variables Vi = Ai*, we can set up the 
following Fokker-Planck-Eolmogorov equation for the 
of the variables V,(t) 

joint probability density p (VI,.. ., V,,; t) 

(2.5) 

The stationary solution of Eq.f2.5) is 

x = D,iD,, d = a/w, + i-6 - 1 

and really represents the joint stationary probability density of vi(t) when the normability 
condition 6 > A is. satisfied, i.e., when u/2&> 1; this condition is identical with the pro- 
bability-stability condition of system (2.4) with si' (1) z.a OL 

Solution (2.6) approximately determines the joint stationary probability density of the 
squares of the amplitudes of the mixing of identical unconnected oscillators with a common 
random parametric perturbation, located in a field of random external forces. Let the equa- 
tions of motionof the osicllators be 

Zi" + 2Gkq’ + a%* 11 + g (t)l = c* (t); t == 1, . . ., n (2.7) 

where f(t), &(t) are bsoadband stationary centred random processes with spectral densities 

(4t (@)* QCitj (w) - a,, (@)&J, and the quantities a,@ are small. Then in (2.7) we canchange 
to the new variables A,(t), r+?:(t) as given by the relations 

=t = ASims& 4' = --5aA,~in8~, 0i = Qt+ 81 

A subsequent application of the rrheorem in /9/ leads to a system of Ito stochastic equations 
in A,(t) (see /6/ for one such equation), and this system proves to be exactly equivalent to 
the system of Stratonovich equations (2.4) when 
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