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EXACT SOLUTIONS OF THE FOKKER—PLANCK— KOLMOGOROV EQUATION FOR
CERTAIN MULTIDIMENSIONAL DYNAMIC SYSTEMS™

M.F. DIMENTBERG

Analytic solutions of the Fokker—Planck —Kolmogorov equations for the
stationary joint probability densities of the state variables are obtained
for one clasgs of multidimensional nonlinear dynamic systems with external
random perturbations of white-noise type, and for one class of multidimen-~
sional linear dynamic systems with simultaneously acting external and
parametric random perturbations of white-noise type. The behaviour of the
Lotki-Volterra system in a random medium is investigated as an example.

1. Consider the system of stochastic differential equations
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Here {; (f) are independent stationary normal centred random processes of white-noise type of
similar intensity D:(§; (88 ¢ + 7)) = D§;;8 (x), where 8;; is the Kronecker delta, 8 {tf)is the
delta function, and the angle brackets dencte averaging. The joint probability density p {(z,,.

<2 Zny Y1r - . ¥ni 8} Of the variables i (), y; (f) satisfies the Pokker—Planck—Kolmogorov egqua-
tion /1,2/
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By direct substitution it can be shown that Eg.{1.2) has the following stationary (dp/dt= 0}
solution
P s Tl s e ) =Coxp{— (2/D)G (H)] (1.3)
"
cE=\ g
2
Here C is a constant to be determined from the normalization conditlion (it is clear that solu-
tion (1.3) will in fact determine the desired stationary probability density only if a normal-
ization integral exists). For the special case

n
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distribution (1.3) was obtained in /3/.

As an example let us consider a modified Lotki-Volterra system describing the fluctuation
in the sizes of two interacting populations of the "predator-prey” type in a random medium
74,5/

u o= kBuy — mu, v =av [1 + §{ — puv — v (1.4)

Here u {f) and v {f) are the sizes of the two populations; k,B, m, @, ¥ are positive constants,
and E(f) is a stationary normal centred random process of white-noise type with intensity

Dy.  In /4/ the problem being examined was investigated by analyzing the stochastic mean-
square stability of the equation for small perturbations, obtained by linearizing the Eys.(1.4)
in a neighbourhood of a stable equilibrxium position

Uy = a/f — ym/(kB?), v, = m/(kf) (1.5)

(Here and henceforth we assume that y << akf/m).
By the change of variables
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z=Inu, y=hv (1.6)
Egs. (1.4) can be reduced to the form {1.1), and {(since the index I takes only the one value

r=1,we will omit it} H(z, y) = kBeV — my + Be* — (@ — ym/(kB)) = 1.7
g (H) = v/ (kp), D = D’

Substituting (1.7) into (1.3) and returning to the original variables u and v, by the
well-known rules for finding the probability density of a function of a random variable /1,6/,
using {(1.5) we obtain, after normalizing in the first guadrant of the plane u,v the following
expression for the stationary joint probability density w (u, v) of the two population sizes (T
is the gamma function)

w(u, V) ==w; (@) w2 (), w1 @)= (OIS (Bugjk) ubus/k-1e-du/k (1.8)
wy (v) == §OIT (Svo) vovriewds, § = 2yp/(Dyx?)

Thus, for steady-state fluctuations of system (1.4) the processes u (f) and v (f) are statist-
ically independent and are subject to one and the same distribution law %% The means of
processes u(l), v{{) equal u, Uy respectively, the variances equal ugh/8, vo/6, respectively,
and the largest probable values (the maximum points of the functions wy (u), w (v)) egual 1y —
ki, v, — 1/8, respectively. Dy-»0 the probability densities w, (u) and 'w, (v) are asymptotic-
ally normal, while for fairly intense random perturbations — when 6« kfu, and 8 < 1/v, re-
spectively — they are monotonically decreasing on the semi-axes u >0, v > 0 and have singular-
ities at the points u =0, v=0. Such a qualitative transformation of the function w (u, v) in
the domain of large Di does not at all signify, however, the death of the populations, since
the singularities mentioned are integrable, i.e., for any positive u, v,, § expression {(1.8)
does indeed represent the joint stationary probability density of the processes u () and v (f).
It is clear that the deduction that the populations do not vanish, valid onlywithin the frame-
work of the present model, does not take into account those effects which are connected with
the discreteness of the real processes u (t) and v (i) and which may become essential when the
values of u, and v are not sufficiently large compared with unity.

Let us find the average per unit time of the number n, (¥) of intersections by the process
u {t) of some level u with a positive derivative u' =1z, Let p (&, z} be the stationary joint
probability density of the processes u (f) and 2 (f). Making use of a well-known /1/ expression
for n, () and expressing z in terms of 4,V in accordance with the first equation in (1.4),
we have

n+(u)=S zp(u,z)dz=gkﬂu(v—-vo)w(u, v) dv (1.9)

Substituting (1.8) intc {1.9) and carrying out the integration, we obtain

(£B/B) (Bro)™ (Bu/k)¥/* axp (— dvg — Bu/jk) .
n, (u) 2 T 800) T (Baar) {1.10)

In particular, from (1.10) we obtain (on the basis of the asymptotic representation of the
gamma function in the domain of large values of the argument /7/) the formula

ym?

3
limn, @)= 35 . Q=(am— 3 )"
The quantity Q is the natural frequency of small fluctuations of system (1.4) in the neighbour-
hood of the stable equilibrium position u,, v,.
2. We consider the system of stochastic differential equations
2z = —Bu M+ E@ + L) i=1,...,n 2.1

to be understood in Stratonovich's sense. Here § (8, {;({f) are independent staticnary centred

normal random processes of white-noise type, and <t ()& (¢t + 1)) = Db (v), <L (8) & (¢ -+ ¥)) = Db (1),

i=1,...,n The Fokker—Planck — Kolmogorov equation for the joint probability density p (z,
.+ Tp; t) can be written, according to /2/, as

oo\ 2 D e DB 2 (2.2)
F—ﬁz‘—a{xnﬂ)—r 'TEZF‘S —r—:z—-z—(,ﬁ—i-[ziz-gz(x,-p)} .
$mel 1wl 2em) F ] 7

Equation (2.2) has the stationary (dp/dt == 0) solution

T
Pz =Clx+ Sz, v = DDy, & = 1/BDg + n/2 (2.3)
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(as before, € is a normalizing constant). Solution (2.3) determines the stationary joint
probability density of the variables ; (f) when the nomablllty condition 26 > 2/(fDy) +4-n is
satisfied, i.e., when §>0. We see that this condition is identical with the condition of
stochastic probability-stability of system (2.1) with g (f)=0 /8/.

. We consider further the following system of Stratonovich stochastic differential equa-
tions

= —ady + 2DeA; + Dyf A + D)L () — DA (1), i=1, ..., n (2.4)

Here §'{¢), {,’ () are independent stationary centered normal random processes of white-noise
type of unit intensity. Changing in (2.4) to the new variables ¥, = 4%, we can set up the

following Pokker—Planck-—-Kolmogorov equation for the joint probabillty density p(Vy, ..., Vs 1)
of the variables V, (t)

51 2 [2a— 4Dy Vip] ~ 2D, Z (2.5}

=z}
4
40:;‘5?" ‘/Vi (VV*P)] + 4Dy ZT[V‘Z F (V;P)}

= 7
The stationary solution of Eg. (2.5) is
1% b (2.6)
"
% = D¢/Dy, b=a/217;+ [ R |

b4=

{1 cf..
PA¥ . O

and really represents the joint stationary probability density of V;(f) when the normability

condition § > n is.satisfied, i.e., when a/2D; > 1; this condition is identical with the pro-
hah)'lx‘l'v-qf-ahf!ifu' condition of system {2.4) with 1’ ‘ H\ = (0

00N QX S8 L. %) WALO == W

Sclutlon (2. 6) approximately determines the 3omt statlonary probability density of the
squares of the amplitudes of the mixing of identical unconnected oscillators with a common
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tions of motion of the osicllators be
" 20 QB =00 i=1,...n (2.7)

where E (f), §; (f) are broadband stationary centred random processes with spectral densities
Oy (0), Dy (0) = Dy (0)5;,, and the quantities a«, ® are small. Then in (2.7) we can change
to the new variables A, (t), ¢; () as given by the relations
Ty = Ay cos 6, -Z{' == —QA; sin 6, 9; = Qt + ¢
A subseguent application of the theorem in /9/ leads to a system of Ito stoch
in 4 () (see /6/ for one such equation), and this system proves to be exactl
the system of Stratonovich equations (2.4) when

= Uy 0y (B),  Dy==1/s n%Dy (2Q)
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